The Plasma-Water Interface: Modern Challenges and New Software Tools

Shane Keniley, Necip B. Uner, Elizabeth Perez, R. Mohan Sankaran, and <u>Davide Curreli</u>

Nuclear, Plasma, and Radiological Engineering University of Illinois at Urbana Champaign

dcurreli@illinois.edu

People – LCPP Laboratory of Computational Plasma Physics

Prof. Davide Curreli

Graduate Students

Logan Meredith

Steven Marcinko

Sonata Valaitis

Mohammad Mustafa

Ananthi Renganathan

Huq Md Fazlul

Xin Zhi Tan

Mikhail Rezazadeh

PhD Candidates

Mikhail Finko

Jon Drobny

Shane Keniley

Alumni

Dr. Rinat Khaziev

Dr. Moutaz Elias

People – Experimental portion of this talk, and contributors

Prof. Mohan Sankaran

Dr. Necip Uner

Elizabeth Perez

Main Question: How do we model a plasma interacting with liquid water?

[Fig adapted from: Lindsay, A. et al. J. Phys. D: Appl. Phys. 48 (2015) 424007]

Outline

Motivation & Background

- 1. Why plasma-water interactions are relevant?
- Societal benefits

2. A New Open-Source MOOSE-Based Application for Low-Temperature Plasmas

- CRANE: chemical kinetics software
- 2. ZAPDOS: plasma transport software
- 3. Verifications of Zapdos-Crane

3. Case Study: Plasma Electrochemical Cell

- 1. Ar/H₂O humid argon plasma interacting with liquid water
- 2. Species in the gas and liquid phases
- 3. Aqueous Charge Balancing
- 4. Reactive Species Generation
- 5. Solvated Electrons at the Interface

4. Conclusions

Motivation: Plasma-Water Interactions

Applications

- Generation of reactive oxygen and nitrogen species
 - Antimicrobial properties
 - Ammonia production
 - Wound disinfection and healing
 - And more
- Other, domain specific
 - Plasma medicine
 - Synthesize graphene particles and nanosheets
 - Toxic metal detection
 - And much more

Advantages

- Cheap and abundant materials
- "Cold" plasma useful for thermally sensitive surfaces
 - heat-sensitive equipment
 - bodily wounds

Top: NO2- production in a plasma-water reactor. [1] Bottom-right: Schematic of solvated electron measurement experiment. [2] Bottom-left: Streamers propagating in liquid water. [3]

Methods

Plasma-in-liquid

- Directly ionize water phase with high voltages
- Requires high voltages, but good source of OH production

Bubble plasmas

 Gas composition of bubbles may be tailored to adjust chemistry

Plasma-liquid interface

- Plasma generated in gas phase
- Transport of reactive species depends on diffusion through water interface
- Electrons drive RONS production by entering water phase and solvating

rigure adapted from [3].

Plasma-liquid interfaces: a challenge for modern plasma modeling

Multiscale and multiphysics

- Electron penetration depth: ~10-100 nm
- o Discharges: mm-m
- Electron solvation: O(fs)
- Electron-driven aqueous reactions: O(ns)
- Chemical reactions: O(us-ms)
- Species diffusion: O(ms minutes)

Strongly coupled behavior between plasma and water

- Electrons drive chemistry in the interface layer, which change chemical composition of the water
- Species diffuse in and evaporate out of interface, modifying plasma discharge conditions
- o Electric fields, gas flow can deform water
- Plasma-induced fluid convection and turbulence is possible

Plasma Chemistry modeling requires information at multiple levels

New software tools: Zapdos and Crane

- Plasma-liquid interfaces are notoriously nonlinear, multiscale in both space and time, and multiphysics
- The MOOSE finite element framework was selected as an appropriate platform for development of a general plasma software package
 - MOOSE applications are natively parallelizable and intended for high performance computing (HPC)
 - All MOOSE apps are able to be coupled together, facilitating multiphysics simulations
- The MOOSE app <u>Zapdos</u>⁴ was developed specifically for modeling plasma transport in 2015-2016
 - As of 2017, only included support for electron and argon discharges
- No chemistry capabilities were included in the MOOSE framework, and Zapdos was hard-coded to accept only a handful of reactions

[4] Lindsay, A. et al. J. Phys. D: Appl. Phys. 49 (2016) 235204 (9pp)

[5] C. DeChant, S. Keniley, D. Curreli, K. Stapelmann, S. Shannon, "Multi-physics simulation of the COST APPJ in the MOOSE framework", Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, GT1.74, Portland, Oregon, Nov 5-9, 2018

Electron density as a function of interfacial loss coefficient in the gas phase (left) and water phase (right). Simulation was performed with Zapdos. Figure adapted from [4].

Model Development

- As of 2017, Zapdos was hard-coded to accept only four species (e-, Ar+ in the gas phase, and e-(aq) and OH-(aq) in the water), with 5 total reactions.
- As part of NSF-funded research, we introduced two new capabilities:
 - 1. Developed Plasma Chemistry Application in MOOSE: "CRANE"

https://github.com/lcpp-org/crane

- Written a model capable of handling an arbitrary number of reactions
- Reactions can be automatically parsed by code into source and sink terms
- Coupled to Zapdos to add source terms to drift-diffusion equations

2. Upgraded Zapdos

https://github.com/shannon-lab/zapdos

- Allowed an arbitrary number of user-defined species
- Included surface charge accumulation
- Upgraded water model to include neutral transport across interface

ZAPDOS: Drift-Diffusion-Reaction Equations

Volumetric Terms:

Species Density:

$$rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s = R_{sr}$$

Electron Energy:

$$rac{\partial (n_e \epsilon)}{\partial t} +
abla \cdot ec{\Gamma}_\epsilon = -e ec{\Gamma}_e \cdot ec{E} + R_{sj,\epsilon}$$
 Joule Heating

$$ec{\Gamma}_s = \pm \mu_s ec{E} n_s - D_s
abla n_s$$

$$ec{\Gamma}_{\epsilon}=-rac{5}{3}\epsilonec{\Gamma}_{e}-rac{5}{3}n_{e}D_{e}
abla\epsilon$$

Poisson Equation:

$$-
abla^2\phi=rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$

Boundary Conditions [6]:

Electron BC:

$$ec{\Gamma}_e \cdot \hat{n} = rac{1-r_e}{1+r_e} \quad \left[-(2a-1)\mu_e ec{E} \cdot \hat{n} n_e + rac{1}{2} v_{th_e} (n_e-n_\gamma)
ight] - rac{2}{1+r_e} (1-a) \sum_p \gamma_p ec{\Gamma}_p \cdot \hat{n}$$

Ion/Netural BC:

$$\vec{\Gamma}_h \cdot \hat{n} = \frac{1 - r_h}{1 + r_h} [(2a - 1) \pm \mu \vec{E} \cdot \hat{n} n_h + \frac{1}{2} v_{th} n_h]$$

Reaction Rates:

$$egin{aligned} R_{sj} &= \sum_{j}
u_{sj} k_{j} \prod_{r}^{R} n_{r} \ & \ R_{sj,\epsilon} &= \sum_{j}
u_{sj} k_{j} \prod_{r}^{R} n_{r} \Delta \epsilon_{j} \end{aligned}$$

1. CRANE: Chemical Kinetics

- Crane is a standalone Moose application developed as part of the previous NSF work focused on modeling arbitrary systems of ODEs
- Source code: https://github.com/lcpp-org/crane
- When coupled to Zapdos, it provides the reaction rate portion of the drift-diffusion-reaction system

$$rac{dn_s}{dt} = \sum_{r=1}^{r_{max}} K_{sr}$$
 $K_{sr} =
u_{sr} k_r \prod_l n_l^L$ Stoichiometric Rate Product of all Coefficient Coefficient Reactants for reaction r

- Electron-impact reactions preprocessed with external Boltzmann solver (Bolsig+)
 - \circ Integral of EEDF $k_r = \gamma \int_0^\infty arepsilon \sigma_r f_0 darepsilon$
 - Calculates rate coefficients (k) and electron transport coefficients
 - Values stored in look-up tables for a range of mean electron energies

 Developed to allow an arbitrary number of reactions to be added in a human-readable format

```
Reaction
                                         Rate Coefficient
                                                                            Units
                                                                 m^3 \text{ mol}^{-1} \text{ s}^{-1}
e + Ar \rightarrow e + Ar
                                                EEDF
e + Ar \rightarrow Ars + e
                                               EEDF
e + Ars \rightarrow e + Ar
                                               EEDF
e + Ar \rightarrow 2e + Ar^+
                                               EEDF
e + Ars \rightarrow 2e + Ar^+
                                               EEDF
Ars + Ars \rightarrow e + Ar + Ar^+
                                           3.3734 \times 10^{8}
Ars + Ar \rightarrow Ar + Ar
                                            1.807 \times 10^{3}
```

Typical reaction list you find in a paper

How you write it in CRANE:

```
[Reactions]
  [argon reactions]
   species = 'em Ar+ Ar*'
   file location = 'rate files'
   potential = 'potential'
   reactions =
                                                     : EEDF [elastic] (reaction1)
                                                     : EEDF [-11.5]
                                                                       (reaction2)
                                                     : EEDF [11.5]
                                                                       (reaction4)
                                                     : EEDF [-15.76]
                                                                       (reaction3)
                                                     : EEDF [-4.43]
                                                                       (reaction5)
                                                     : 3.3734e8'
                 Ar* + Ar* -> em + Ar + Arp
                 Ar* + Ar -> Ar + Ar
                                                     : 1807
 []
```

2. Upgrades to Zapdos

Source code: https://github.com/shannon-lab/zapdos

Zapdos required multiple updates to address realistic plasma-water chemistry:

- 2.1 Accept arbitrary number *s* of user-defined plasma species
- 2.2 Add surface charge accumulation for dielectric interfaces
- 2.3 Include heavy species solvation and evaporation boundary conditions

$$rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s = R_{sr}$$

$$ec{\Gamma}_s = \pm \mu_s ec{E} n_s - D_s
abla n_s$$

$$-
abla^2\phi=rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$

2. Upgrades of Zapdos

2.1 Accept arbitrary number of user-defined species

- Existing code was abstracted to include arbitrary species variables
- A new class, 'HeavySpeciesMaterial', was added to add species properties (mass, charge, transport coefficients)
- Mobility and diffusivity are by default given by Einstein's relation (user can change)

```
[gas species example]
 type = HeavySpeciesMaterial
 heavy species name = Ar+
 heavy species mass = 6.64e-26
 heavy species charge = 1.0
 diffusivity = 1.6897e-5
[]
```

$$\mu_s = \frac{Z_s q_e D_s}{k_B T_e}$$

MIPSE Seminar Nov 17, 2021

2. Upgrades of Zapdos

2.2 Added surface charge accumulation for dielectric interfaces

- Dielectrics are widely used in plasma discharges, but no interface existed in Zapdos to handle surface charge accumulation
- Surface charge was added to the model in two parts:
 - a. ODE at dielectric boundary to describe surface charge accumulation
 - b. Interfacial boundary condition for discontinuous electric field

2. Upgrades of Zapdos

2.3 Include heavy species solvation and evaporation boundary conditions

- A two-way interfacial transport model was added to Zapdos to allow neutral species to transport between gas and liquid phases based on Henry's law
 - a. Henry coefficient, H, defines equilibrium concentration of species at interface
 - b. Flux equality at the interface allows species to naturally flow in or out of the liquid
- While Henry's law is an equilibrium relationship, but only a *local* equilibrium at the interface is assumed - no assumption about bulk concentrations is made

Henry's Law (local at the interface):

$$Hn_G = n_L$$

Flux Equality:

$$D_G \nabla n_G = D_L \nabla n_L$$

Verification of Zapdos-Crane

Both codes were verified against multiple known problems; two examples:

Crane vs. ZDPlasKin (0D reaction networks)

Zapdos-Crane vs. Comsol (1D Dielectric Barrier Discharge)

Typical Workflow

Zapdos-Crane was presented at a 2018 APS-GEC Workshop as an open-source plasma tool:

[8] C. Icenhour, S. Keniley, C. DeChant, C. Permann, A. Lindsay, R. Martineau, D. Curreli, S. Shannon, Multi-Physics Object Oriented Simulation Environment (MOOSE), Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, BM2.1, Portland, Oregon, Nov 5-9, 2018

https://github.com/lcpp-org/crane

https://github.com/shannon-lab/zapdos

Model of the Plasma-Water Interface in Zapdos-Crane

- Water region assumed to behave as a "dense plasma":
 - Same drift-diffusion-reaction equations apply
 - Higher background density
 - Relative permittivity of 81

Plasma Region:

$$egin{aligned} rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s &= R_{sr} \ -
abla^2 \phi &= rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0} \end{aligned}$$

Water Region:

$$\frac{\partial n_{s,aq}}{\partial t} + \nabla \cdot \vec{\Gamma}_{s,aq} = R_{sr,aq}$$
$$-\nabla^2 \phi = \frac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$

Electrons directly drift and diffuse into water: $\vec{\Gamma}_{e, \text{liquid}} \cdot \hat{n} = -\vec{\Gamma}_{e, \text{gas}} \cdot \hat{n}$

Assumptions:

- Electrons solvate instantly in water phase
 - Solvation time estimated to be O(fs)
- Heat transport is neglected (recently relaxed)
- Electron temperature is not considered in water

Heavy Species Solvation (Henry's Law):

Case Study: Plasma Electrochemical Cell

- Argon plasma on liquid water
- Electrochemical cell
 - 66.6 mm-wide borosilicate cell
 - Gas-tight PFTE lid
 - Stainless steel needle electrode
 - DC discharge across 1 mm gap
- Liquid
 - Deionized water (HPLC grade)
 - NaCl 20 mM
- DC power supply
 - ±2500V applied voltage, changed to control the current
 - \circ R_B = 651k Ω ballast resistor

Schematic of the plasma electrochemical cell

Anodic vs. Cathodic operation

Anodic operation

Cathodic operation

Charged and Neutral Species in the Gas/Liquid

	Charged Species	Neutrals
Plasma	e^{-} $Ar^{+} Ar_{2}^{+}$ $H_{2}O^{+} OH^{+} OH^{-}, O^{-},$ $O_{2}^{-}, O_{2}^{+} H^{+} O^{+} H^{-},$ $H_{3}O^{+} ArH^{+}$, , , , , , , ,
Water	${\rm e}_{aq}^{-} \ {\rm H}_{3}{\rm O}_{aq}^{+} \ {\rm OH}_{aq}^{-} \ {\rm O2}_{aq}^{-} \ {\rm O}_{aq}^{-} \ {\rm HO}_{2aq}^{-} \ {\rm H}_{2}{\rm O}_{aq}^{+} \ {\rm O}_{3aq}^{-}$	$H_{aq} H_2 O_{2aq} O H_{aq} O_{2aq}$ $O_{aq} H_{2aq} H O_{2aq} O_{3aq}$ $H O_{3aq}$

Reactions: 301 gas-phase and 72 liquid-phase reactions

MIPSE Seminar Nov 17, 2021

Flow structure and gas temperature

Ar/H₂O plasma on liquid water - Example of discharge evolution

Electric Potential and Electric Field

Electron Temperature at steady state, t > 100 ms

Density of selected species vs. time (volume averaged)

Density of selected species vs. position

Reaction Mechanism in the Gas Phase during Cathodic Operations

Reaction Mechanism during Anodic Operations

- Reaction mechanism is largely similar to the cathodic case, but with few fundamental differences
- Now positive species are accelerated toward the water
- Electrons move upward toward the positively-biased electrode
- Important: lack of solvated electrons in this case at the interface
- H₂, OH and H₂O₂ produced in the gas phase enter the water through dissolution
- In water, molecular oxygen is largely produced through the reaction

$$OH_{(aq)} + HO_{2(aq)} \to H_2O_{(aq)} + O_{2(aq)}$$

 O₂ production is in agreement with conventional electrolysis, where O₂ normally appears at the anode (+)

Hydrogen Peroxide – Generation Mechanism

- H₂O₂ is one of the predominant products
- Produced in the gas phase, mainly from OH
- Gaseous OH primarily forms in the cathode fall of the discharge through reactions with excited Ar states:

$$(Ar^*, Ar^{**}, Ar^{***}) + H_2O \rightarrow Ar + OH + H$$

 $Ar_2^* + H_2O \rightarrow 2Ar + OH + H$
 $H + HO_2 \rightarrow 2OH$

 Hydrogen peroxide is then formed through recombination of OH via three body reactions with neutral Ar and H₂O

$$2OH + Ar \rightarrow H_2O_2 + Ar$$
$$2OH + H_2O \rightarrow H_2O_2 + H_2O$$

Average concentration of $H_2O_{2(aq)}$ over time in the 10 µm liquid film. In both cases $H_2O_{2(aq)}$ reaches steady state after ~10 ms, but in the anodic case the average value is over 4 orders of magnitude larger.

Hydrogen Peroxide – Generation Mechanism

- More H₂O₂ is produced in the anodic case for a number of reasons
- In the anodic case, T_e (average electron energy) is larger in front of the water surface
- Hence, density of excited Ar and ionized Ar is higher in front of the water surface
- Consequently, the production of OH and H₂O₂ peaks right in front of the water
- In addition, the concentration of solvated electrons in the first water layers is negligible in the anodic case with respect to the cathodic case!

Solvated Electrons play a huge role in the consumption of H₂O_{2(aq)}

Dominant loss mechanisms for $H_2O_{2(aa)}$ in water

Anodic

Reaction	Percent (%)
$H_{(aq)} + H_2O_{2(aq)} \rightarrow OH_{(aq)} + H_2O_l$	62.15
$\mathrm{OH}_{(aq)} + \mathrm{H}_2\mathrm{O}_{2(aq)} \to \mathrm{H}_2\mathrm{O}_l + \mathrm{HO}_{2(aq)}$	35.86
$H_{2(aq)} + H_2O_{2(aq)} \rightarrow H_{(aq)} + OH_{(aq)} + H_2O_l$	1.34

Cathodic

Cathodic		
Reaction	Percent	
$e_{(aq)} + H_2O_{2(aq)} \to OH_{(aq)} + OH_{(aq)}^-$	99.09	
$O_{(aq)}^- + H_2 O_{2(aq)} \to O_{2(aq)}^- + H_2 O_l$	0.47	
$H_{(aq)} + H_2O_{2(aq)} \to OH_{(aq)} + H_2O_l$	0.34	
	I	

Aqueous hydrogen peroxide concentration at steady state in the cathodic case. The dotted line shows the concentration in the cathodic case with the reaction with solvated electrons switched off.

$$e_{(aq)} + H_2O_{2(aq)} \to OH_{(aq)} + OH_{(aq)}$$

Control experiment: NO₃- electron scavenger in cathodic operations

- Control experiment was run in cathodic operations to understand the role of the "electron wall"
- Adding sodium nitrate (NaNO₃) to the solution
- Aqueous sodium nitrate fully dissociates into Na⁺_(aq) and NO₃⁻_(aq)
- Resulting nitrate anions act as effective solvated electron scavengers, through the reduction

$$e_{(aq)} + NO_{3(aq)}^{-} \to NO_{3(aq)}^{2-}$$

Experimental measurements of hydrogen peroxide concentration as a function of initial $NO_{3^-(aq)}$ concentration added to the solution. Increasing the scavenger concentration from 10 to 100 mM results in $H_2O_{2(aq)}$ concentration increase from around 2.5 to 17 μ M. Additional $NO_{3^-(aq)}$ beyond 100 mM slightly decreases $[H_2O_{2(aq)}]$.

MIPSE Seminar Nov 17, 2021

Hydrogen Peroxide – Concentration, Model vs. Experiments

- H₂O_{2(aq)} produced in plasma-liquid experiments was measured using two colorimetric assays:
 - titanium (IV) oxysulfate assay (TiOSO4)
 - ferrous oxidation-xylenol orange (FOX) assay
- $H_2O_{2(aq)}$ as a function of time at various discharge currents was compared to values predicted by the simulation
- Both simulations and measurements agree on the linear trend of increase of $H_2O_{2(aq)}$ concentration vs. time
- When scaled w.r.t the current, the simulation predicts a production rate 22% higher than the experiment

Solvated Electrons play a huge role in the consumption of H₂O_{2(aq)}

Conclusions

- Crane and Zapdos are two new, open-source, software applications based on the Moose framework, which can be used for the simulation of LTP with complex Plasma Chemistry
- We used the two new applications to study the problem of an argon plasma interfaced with liquid water, in both anodic and cathodic configuration
- We found that solvated electrons play a significant role in determining the production and destruction of chemical species and radicals in the system
- We looked at the production of hydrogen peroxide, finding that:
 - In cathodic operations, the layer of solvated electrons effectively dissociates
 H2O2, leaving only a negligible concentration inside the liquid.
 - In anodic operations, radicals are produced closer to the surface, and the layer of solvated electrons is almost not present; hydrogen peroxide can dissolve more easily into the liquid, where it remains present in significant concentrations useful for application purposes.

Thanks!

